В параллелограмме противоположные углы равны, а сумма двух соседних углов равна 180°. Пусть один из углов параллелограмма равен ( \alpha ), тогда соседний угол будет ( \alpha + 30^\circ ).
Исходя из свойства параллелограмма о сумме соседних углов, получаем уравнение:
[ \alpha + (\alpha + 30^\circ) = 180^\circ ]
Упростим уравнение:
[ 2\alpha + 30^\circ = 180^\circ ]
[ 2\alpha = 150^\circ ]
[ \alpha = 75^\circ ]
Таким образом, один из углов параллелограмма равен 75°. Соседний угол, который на 30° больше, будет равен:
[ 75^\circ + 30^\circ = 105^\circ ]
Поскольку противоположные углы параллелограмма равны, другие два угла также будут равны 75° и 105° соответственно.
Итак, углы параллелограмма равны 75° и 105°.