Биссектриса угла параллелограмма пересекает его сторону,образуя с ней угол 35 градусов.найдите углы...

Тематика Геометрия
Уровень 10 - 11 классы
биссектриса угол параллелограмм пересечение сторона угол 35 градусов углы параллелограмма
0

Биссектриса угла параллелограмма пересекает его сторону,образуя с ней угол 35 градусов.найдите углы параллелограмма.

avatar
задан 9 месяцев назад

2 Ответа

0

Чтобы решить задачу, начнем с анализа свойств биссектрисы и параллелограмма.

Пусть ( ABCD ) — параллелограмм, где ( AB \parallel CD ) и ( AD \parallel BC ). Пусть ( \angle BAD ) — один из углов параллелограмма. Биссектриса угла ( \angle BAD ) пересекает сторону ( AD ) в точке ( E ), образуя угол ( \angle BAE = 35^\circ ) с ( AB ).

Так как ( \angle BAE ) — половина угла ( \angle BAD ), то полная величина угла ( \angle BAD ) равна ( 2 \times 35^\circ = 70^\circ ).

Теперь рассмотрим противоположный угол ( \angle BCD ) параллелограмма. В параллелограмме противоположные углы равны, следовательно, ( \angle BCD = \angle BAD = 70^\circ ).

В параллелограмме сумма углов, прилежащих к одной стороне, равна ( 180^\circ ). То есть: [ \angle BAD + \angle ADC = 180^\circ ]

Подставим известное значение ( \angle BAD ): [ 70^\circ + \angle ADC = 180^\circ ]

Отсюда: [ \angle ADC = 180^\circ - 70^\circ = 110^\circ ]

Аналогично, угол ( \angle ABC ) равен углу ( \angle ADC ), так как противоположные углы в параллелограмме равны. Следовательно: [ \angle ABC = 110^\circ ]

Итак, мы нашли все углы параллелограмма:

  • ( \angle BAD = 70^\circ )
  • ( \angle ABC = 110^\circ )
  • ( \angle BCD = 70^\circ )
  • ( \angle ADC = 110^\circ )

Таким образом, углы параллелограмма равны ( 70^\circ ) и ( 110^\circ ).

avatar
ответил 9 месяцев назад
0

Для решения данной задачи нам необходимо воспользоваться свойствами параллелограмма и биссектрисы угла. Итак, пусть углы параллелограмма обозначены как α, β, γ и δ. Также пусть точка пересечения биссектрисы с одной из сторон параллелограмма обозначена как O.

Из условия задачи мы знаем, что угол BOA (где O - точка пересечения биссектрисы с одной из сторон) равен 35 градусов. Так как углы BOA и AOD равны (по свойству биссектрисы), то угол AOD также равен 35 градусов.

Теперь рассмотрим треугольник AOB. В этом треугольнике сумма углов равна 180 градусов, так как это прямоугольный треугольник. Значит, угол AOB равен 180 - 35 - 90 = 55 градусов.

Таким образом, угол α параллелограмма равен углу AOB, то есть 55 градусов. Угол β равен углу AOD, то есть 35 градусов. Углы γ и δ параллелограмма равны углам α и β соответственно, то есть 55 и 35 градусов.

Итак, углы параллелограмма равны 55, 35, 55 и 35 градусов.

avatar
ответил 9 месяцев назад

Ваш ответ

Вопросы по теме